156k views
5 votes
Find the vertices and foci of the ellipse. x2 + 3y2 + 4x − 12y + 13 = 0

1 Answer

2 votes
Hey there hope I can help!

NOTE: Please look at the images as they are useful tips!

\left(h+c,\:k\right),\:\left(h-c,\:k\right)


(\left(x-h\right)^2)/(a^2)+(\left(y-k\right)^2)/(b^2)=1\:\mathrm{is\:the\:ellipse\:standard\:equation}

\mathrm{with\:center}\:\left(h,\:k\right)\:\mathrm{and\:}a,\:b\mathrm{\:are\:the\:semi-major\:and\:semi-minor\:axes}


x^2+3y^2+4x-12y+13=0 \ \textgreater \ \mathrm{Subtract\:}13\mathrm{\:from\:both\:sides}

x^2+4x-12y+3y^2=-13


\mathrm{Factor\:out\:coefficient\:of\:square\:terms} \ \textgreater \ \left(x^2+4x\right)+3\left(y^2-4y\right)=-13


\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}3

(1)/(3)\left(x^2+4x\right)+\left(y^2-4y\right)=-(13)/(3)


\mathrm{Convert}\:x\:\mathrm{to\:square\:form}

(1)/(3)\left(x^2+4x+4\right)+\left(y^2-4y\right)=-(13)/(3)+(1)/(3)\left(4\right)


\mathrm{Convert\:to\:square\:form}

(1)/(3)\left(x+2\right)^2+\left(y^2-4y\right)=-(13)/(3)+(1)/(3)\left(4\right)


\mathrm{Convert}\:y\:\mathrm{to\:square\:form}

(1)/(3)\left(x+2\right)^2+\left(y^2-4y+4\right)=-(13)/(3)+(1)/(3)\left(4\right)+4


\mathrm{Convert\:to\:square\:form}

(1)/(3)\left(x+2\right)^2+\left(y-2\right)^2=-(13)/(3)+(1)/(3)\left(4\right)+4


\mathrm{Refine\:}-(13)/(3)+(1)/(3)\left(4\right)+4 \ \textgreater \ (1)/(3)\left(x+2\right)^2+\left(y-2\right)^2=1

Refine again

(\left(x+2\right)^2)/(3)+(\left(y-2\right)^2)/(1)=1

Rewrite it in the ellipse standard form

(\left(x-\left(-2\right)\right)^2)/(\left(√(3)\right)^2)+(\left(y-2\right)^2)/(1^2)=1


\mathrm{Therefore\:ellipse\:properties\:are:}\left(h,\:k\right)=\left(-2,\:2\right),\:a=√(3),\:b=1

\left(-2+c,\:2\right),\:\left(-2-c,\:2\right)

Now we want to compute c!


c =\sqrt{\left(√(3)\right)^2-1^2} \ \textgreater \ \mathrm{Apply\:rule}\:1^a=1 \ \textgreater \ 1^2=1 \ \textgreater \ \sqrt{\left(√(3)\right)^2-1}


\left(√(3)\right)^2 \ \textgreater \ √(a)=a^{(1)/(2)} \ \textgreater \ \left(3^{(1)/(2)}\right)^2 \ \textgreater \ \mathrm{Apply\:exponent\:rule}: \left(a^b\right)^c=a^(bc) \ \textgreater \ 3^{(1)/(2)\cdot \:2}


(1)/(2)\cdot \:2 \ \textgreater \ \mathrm{Multiply\:fractions}: \:a\cdot (b)/(c)=(a\:\cdot \:b)/(c) \ \textgreater \ (1\cdot \:2)/(2) \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a

(2)/(2) \ \textgreater \ \mathrm{Cancel\:the\:common\:factor:}\:2 \ \textgreater \ 1 \ \textgreater \ 3 \ \textgreater \ √(3-1) \ \textgreater \ √(2)

Therefore the foci is
\left(-2+√(2),\:2\right),\:\left(-2-√(2),\:2\right)


\mathrm{The\:vertices\:are\:the\:two\:points\:on\:the\:ellipse\:that\:intersect\:the\:major\:axis}

\left(h+a,\:k\right),\:\left(h-a,\:k\right)


x^2+3y^2+4x-12y+13=0 \ \textgreater \ \mathrm{Subtract\:}13\mathrm{\:from\:both\:sides}

x^2+4x-12y+3y^2=-13


\mathrm{Factor\:out\:coefficient\:of\:square\:terms} \ \textgreater \ \left(x^2+4x\right)+3\left(y^2-4y\right)=-13


\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}3:(1)/(3)\left(x^2+4x\right)+\left(y^2-4y\right)=-(13)/(3)


\mathrm{Convert}\:x\:\mathrm{to\:square\:form}

(1)/(3)\left(x^2+4x+4\right)+\left(y^2-4y\right)=-(13)/(3)+(1)/(3)\left(4\right)


\mathrm{Convert\:to\:square\:form}

(1)/(3)\left(x+2\right)^2+\left(y^2-4y\right)=-(13)/(3)+(1)/(3)\left(4\right)


\mathrm{Convert}\:y\:\mathrm{to\:square\:form}

(1)/(3)\left(x+2\right)^2+\left(y^2-4y+4\right)=-(13)/(3)+(1)/(3)\left(4\right)+4


\mathrm{Convert\:to\:square\:form}

(1)/(3)\left(x+2\right)^2+\left(y-2\right)^2=-(13)/(3)+(1)/(3)\left(4\right)+4


\mathrm{Refine\:}-(13)/(3)+(1)/(3)\left(4\right)+4 \ \textgreater \ (1)/(3)\left(x+2\right)^2+\left(y-2\right)^2=1 \ \textgreater \ Refine

(\left(x+2\right)^2)/(3)+(\left(y-2\right)^2)/(1)=1

Rewrite in the standard form again

image


\mathrm{Therefore\:ellipse\:properties\:are:} \left(h,\:k\right)=\left(-2,\:2\right),\:a=√(3),\:b=1

Which means the vertices are
\left(-2+√(3),\:2\right),\:\left(-2-√(3),\:2\right)

Hope this helps!
Find the vertices and foci of the ellipse. x2 + 3y2 + 4x − 12y + 13 = 0-example-1
User Homer Jay Simpson
by
7.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories