200k views
1 vote
Find the laplace transform of f(t) = cosh kt = (e kt + e −kt)/2

User Rafraf
by
8.3k points

1 Answer

4 votes
Hello there, hope I can help!

I assume you mean
L\left\{(ekt+e-kt)/(2)\right\}
With that, let's begin


(ekt+e-kt)/(2)=(ekt)/(2)+(e)/(2)-(kt)/(2) \ \textgreater \ L\left\{(ekt)/(2)-(kt)/(2)+(e)/(2)\right\}


\mathrm{Use\:the\:linearity\:property\:of\:Laplace\:Transform}

\mathrm{For\:functions\:}f\left(t\right),\:g\left(t\right)\mathrm{\:and\:constants\:}a,\:b

L\left\{a\cdot f\left(t\right)+b\cdot g\left(t\right)\right\}=a\cdot L\left\{f\left(t\right)\right\}+b\cdot L\left\{g\left(t\right)\right\}

(ek)/(2)L\left\{t\right\}+L\left\{(e)/(2)\right\}-(k)/(2)L\left\{t\right\}


L\left\{t\right\} \ \textgreater \ \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{t\right\}=(1)/(s^2) \ \textgreater \ L\left\{t\right\}=(1)/(s^2)


L\left\{(e)/(2)\right\} \ \textgreater \ \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{a\right\}=(a)/(s) \ \textgreater \ L\left\{(e)/(2)\right\}=((e)/(2))/(s) \ \textgreater \ (e)/(2s)


(ek)/(2)\cdot (1)/(s^2)+(e)/(2s)-(k)/(2)\cdot (1)/(s^2)


(ek)/(2)\cdot (1)/(s^2) \ \textgreater \ \mathrm{Multiply\:fractions}: (a)/(b)\cdot (c)/(d)=(a\:\cdot \:c)/(b\:\cdot \:d) \ \textgreater \ (ek\cdot \:1)/(2s^2) \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a

(ek)/(2s^2)


(k)/(2)\cdot (1)/(s^2) \ \textgreater \ \mathrm{Multiply\:fractions}: (a)/(b)\cdot (c)/(d)=(a\:\cdot \:c)/(b\:\cdot \:d) \ \textgreater \ (k\cdot \:1)/(2s^2) \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a

(k)/(2s^2)


(ek)/(2s^2)+(e)/(2s)-(k)/(2s^2)

Hope this helps!
User Alex Turbin
by
8.0k points