200k views
1 vote
Find the laplace transform of f(t) = cosh kt = (e kt + e −kt)/2

User Rafraf
by
8.3k points

1 Answer

4 votes
Hello there, hope I can help!

I assume you mean
L\left\{(ekt+e-kt)/(2)\right\}
With that, let's begin


(ekt+e-kt)/(2)=(ekt)/(2)+(e)/(2)-(kt)/(2) \ \textgreater \ L\left\{(ekt)/(2)-(kt)/(2)+(e)/(2)\right\}


\mathrm{Use\:the\:linearity\:property\:of\:Laplace\:Transform}

\mathrm{For\:functions\:}f\left(t\right),\:g\left(t\right)\mathrm{\:and\:constants\:}a,\:b

L\left\{a\cdot f\left(t\right)+b\cdot g\left(t\right)\right\}=a\cdot L\left\{f\left(t\right)\right\}+b\cdot L\left\{g\left(t\right)\right\}

(ek)/(2)L\left\{t\right\}+L\left\{(e)/(2)\right\}-(k)/(2)L\left\{t\right\}


L\left\{t\right\} \ \textgreater \ \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{t\right\}=(1)/(s^2) \ \textgreater \ L\left\{t\right\}=(1)/(s^2)


L\left\{(e)/(2)\right\} \ \textgreater \ \mathrm{Use\:Laplace\:Transform\:table}: \:L\left\{a\right\}=(a)/(s) \ \textgreater \ L\left\{(e)/(2)\right\}=((e)/(2))/(s) \ \textgreater \ (e)/(2s)


(ek)/(2)\cdot (1)/(s^2)+(e)/(2s)-(k)/(2)\cdot (1)/(s^2)


(ek)/(2)\cdot (1)/(s^2) \ \textgreater \ \mathrm{Multiply\:fractions}: (a)/(b)\cdot (c)/(d)=(a\:\cdot \:c)/(b\:\cdot \:d) \ \textgreater \ (ek\cdot \:1)/(2s^2) \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a

(ek)/(2s^2)


(k)/(2)\cdot (1)/(s^2) \ \textgreater \ \mathrm{Multiply\:fractions}: (a)/(b)\cdot (c)/(d)=(a\:\cdot \:c)/(b\:\cdot \:d) \ \textgreater \ (k\cdot \:1)/(2s^2) \ \textgreater \ \mathrm{Apply\:rule}\:1\cdot \:a=a

(k)/(2s^2)


(ek)/(2s^2)+(e)/(2s)-(k)/(2s^2)

Hope this helps!
User Alex Turbin
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories