151k views
1 vote
The coordinates of the vertices of triangle ABC are A(-1,3), B(1,2) and C(-3,-1).

Determine the slope of each side of the triangle and use that information to determine if the triangle is a right triangle or not.

User Drewh
by
7.5k points

1 Answer

3 votes
check the picture below.

so... let's check those slopes then. Notice the triangle, the triangle "seem" to have a right-angle at the vertex A, namely, the slopes of AB and AC are perpendicular if that's true.

Now, when the product of two perpendicular slopes is -1.

so, let's check the slopes then.


\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &A&(~{{ -1}} &,&{{ 3}}~) % (c,d) &B&(~{{ 1}} &,&{{ 2}}~) \end{array} \\\\\\ % slope = m slope = {{ m}}\implies \cfrac{\stackrel{rise}{{{ y_2}}-{{ y_1}}}}{\stackrel{run}{{{ x_2}}-{{ x_1}}}}\implies \cfrac{2-3}{1-(-1)}\implies \cfrac{2-3}{1+1}\implies \cfrac{-1}{2}\\\\ -------------------------------\\\\


\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &A&(~{{ -1}} &,&{{ 3}}~) % (c,d) &C&(~{{ -3}} &,&{{ -1}}~) \end{array} \\\\\\ % slope = m slope = {{ m}}\implies \cfrac{\stackrel{rise}{{{ y_2}}-{{ y_1}}}}{\stackrel{run}{{{ x_2}}-{{ x_1}}}}\implies \cfrac{-1-3}{-3-(-1)}\implies \cfrac{-1-3}{-3+1} \\\\\\ \cfrac{-4}{-2}\implies \cfrac{2}{1}\implies 2\\\\ -------------------------------


\bf \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &C&(~{{ -3}} &,&{{ -1}}~) % (c,d) &B&(~{{ 1}} &,&{{ 2}}~) \end{array} \\\\\\ % slope = m slope = {{ m}}\implies \cfrac{\stackrel{rise}{{{ y_2}}-{{ y_1}}}}{\stackrel{run}{{{ x_2}}-{{ x_1}}}}\implies \cfrac{2-(-1)}{1-(-3)}\implies \cfrac{2+1}{1+3}\implies \cfrac{3}{4}

now, let's check the product of AB and AC,
\bf \stackrel{AB_m}{-\cfrac{1}{2}}\cdot \stackrel{AC_m}{2}\implies -1
The coordinates of the vertices of triangle ABC are A(-1,3), B(1,2) and C(-3,-1). Determine-example-1
User M Abubaker Majeed
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories