223k views
5 votes
Find the exact value by using a half-angle identity.

sin(7
\pi/8)

User Uldall
by
8.2k points

1 Answer

3 votes

\bf sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1-cos({{ \theta}})}{2}}\\\\ -------------------------------\\\\ \cfrac{7\pi }{8}\cdot 2\implies \cfrac{7\pi }{4}\qquad \qquad sin\left((7\pi )/(8) \right)\implies sin\left(\cfrac{(7\pi )/(4)}{2} \right) \\\\\\ sin\left(\cfrac{(7\pi )/(4)}{2} \right)=\pm\sqrt{\cfrac{1-cos\left((7\pi )/(4) \right)}{2}}\implies sin\left(\cfrac{(7\pi )/(4)}{2} \right)=\pm\sqrt{\cfrac{1-(√(2))/(2)}{2}}


\bf sin\left(\cfrac{(7\pi )/(4)}{2} \right)=\pm\sqrt{\cfrac{(2-√(2))/(2)}{2}} \implies sin\left(\cfrac{(7\pi )/(4)}{2} \right)=\pm\sqrt{\cfrac{2-√(2)}{4}} \\\\\\ sin\left(\cfrac{(7\pi )/(4)}{2} \right)=\pm\cfrac{\sqrt{2-√(2)}}{√(4)}\implies sin\left(\cfrac{(7\pi )/(4)}{2} \right)=\pm\cfrac{\sqrt{2-√(2)}}{2}
User Admoghal
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories