138k views
1 vote
Solve for x in the equation 2x^2+3x-7=x^2+5x+39

User MethodMan
by
7.9k points

2 Answers

4 votes

answer:

D

hope this helps :o)

User Vstoyanov
by
8.2k points
4 votes
Hey there, hope I can help!


\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}

2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request

x^2-2x-46=0

Lets use the quadratic formula now

\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}

x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_(1,\:2)=(-\left(-2\right)\pm √(\left(-2\right)^2-4\cdot \:1\left(-46\right)))/(2\cdot \:1)


(-\left(-2\right)+√(\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)))/(2\cdot \:1) \ \textgreater \ \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ (2+√(\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)))/(2\cdot \:1)

Multiply the numbers 2 * 1 = 2

(2+√(\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4))/(2)


2+√(\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)) \ \textgreater \ √(\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right))


\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ √(\left(-2\right)^2+1\cdot \:4\cdot \:46) \ \textgreater \ \left(-2\right)^2=2^2, 2^2 = 4


\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \ √(4+184) \ \textgreater \ √(188) \ \textgreater \ 2 + √(188)

(2+√(188))/(2) \ \textgreater \ Prime\;factorize\;188 \ \textgreater \ 2^2\cdot \:47 \ \textgreater \ √(2^2\cdot \:47)


\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \ √(47)√(2^2)


\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \ √(2^2)=2 \ \textgreater \ 2√(47) \ \textgreater \ (2+2√(47))/(2)


Factor\;2+2√(47) \ \textgreater \ Rewrite\;as\;1\cdot \:2+2√(47)

\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \ 2\left(1+√(47)\right) \ \textgreater \ (2\left(1+√(47)\right))/(2)


\mathrm{Divide\:the\:numbers:}\:(2)/(2)=1 \ \textgreater \ 1+√(47)

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.


(-\left(-2\right)-√(\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)))/(2\cdot \:1) \ \textgreater \ \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \ (2-√(\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)))/(2\cdot \:1)


(2-√(\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4))/(2)


2-√(\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)) \ \textgreater \ 2-√(188) \ \textgreater \ (2-√(188))/(2)


√(188) = 2√(47) \ \textgreater \ (2-2√(47))/(2)


2-2√(47) \ \textgreater \ 2\left(1-√(47)\right) \ \textgreater \ (2\left(1-√(47)\right))/(2) \ \textgreater \ 1-√(47)

Therefore our final solutions are

x=1+√(47),\:x=1-√(47)

Hope this helps!
User Peterrabbit
by
8.1k points