11.0k views
1 vote
Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

Rewrite the following equation in the form y = a(x - h)2 + k. Then, determine the x-coordinate of the minimum.

Type the correct answer in each box. Use numerals instead of words. If necessary, use-example-1
User Alxkolm
by
7.9k points

2 Answers

3 votes

Explanation:


y = 2x^2-32x+56


y=2(x^2-16x+28)

Adding and subtracting 64 :


y=2(x^2-16x+64-64+28)</p><p>[tex]y=2(x^2-16x+64) +2(-64+28)


y=2(x^2-2* x* 8+8^2) +2(-36)

Using identity :
(a+b)^2=a^2-2ab+b^2


y=2* (x-8)^2-72


y=2* (x-8)^2+(-72)

Putting, x = 8


y=2* (8-8)^2+(-72)

y = -72

User Antwoine
by
8.9k points
2 votes
Given: y = 2x^2 - 32x + 56

1) y = 2 [ x^2 - 16x] + 56

2) y = 2 [ (x - 8)^2 - 64 ] + 56

3) y = 2 (x - 8)^2 - 128 + 56

4) y = 2 (x - 8)^2 - 72 <----------- answer

Minimum = vertex = (h,k) = (8, - 72)

=> x-ccordinate of the minimum = 8 <-------- answer
User Kuanyui
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories