187k views
4 votes
The figure is a parallelogram.

The m∠ACD = (4x + 4)° and m∠ABD = (6x - 14)°. Find m∠ACD.
A) 9°
B) 24°
C) 40°
D) 60°

The figure is a parallelogram. The m∠ACD = (4x + 4)° and m∠ABD = (6x - 14)°. Find-example-1

2 Answers

4 votes

Answer:

c:40

Step-by-step explanation:

User Jacefarm
by
8.4k points
0 votes
Answer: " m∠ACD = 40° " .
______________________________________________________
Step-by-step explanation:
______________________________________________________
We are asked to find: "m∠ACD" ;
______________________________________
Note: m∠ACD = m∠ABD ;
______________________________________________________
So, given:

m∠ACD = (4x + 4)° ;

m∠ABD = (6x - 14)° ;
_______________________________________________________
4x + 4 = 6x - 14 ;

Solve for "x" ; then solve for: "m∠ACD" ;
_______________________________________________________
Add "14" to each side of the equation; and subtract "4x" from each side of the equation ;

4x + 4 + 14 - 4x = 6x - 14 + 14 - 4x ;

to get:

18 = 2x ;

↔ 2x = 18 ;

Divide each side of the equation by "2" ; to isolate "x" on one side of the equation; & to solve for "x" ;
__________________________________________________________
2x / 2 = 18/2 ;

x = 9 .
_________________________________________________________
Now, to solve for: " m∠ACD " :
_________________________________________________________
m∠ACD = (4x + 4)° ;

Substitute "9" for "x" ;

m∠ACD = (4*9) + 4 = 36 + 4 = 40° .
_____________________________________________
Answer: " m∠ACD = 40° " .
_____________________________________________
Let us check our answer:
_____________________________________________
m∠ACD = 40 ; and m∠ABD = (6x - 14) ;

m∠ACD = ∠ABD ;

Since
m∠ABD = (6x - 14) ;

If x = 9; if we plug in "9" into the expression for "m∠ABD" ; will the value obtained be "40" ??

m∠ABD = (6x - 14) ; Let us plug in "9" for "x" ; to see if the value obtained is "40"

6x - 14 = ? (6*9) - 14 ??

6x - 14 = ? 54 - 14 ??

6x - 14 = ? 40 ?? Yes!
______________________________________________
User Ronnefeldt
by
8.1k points