100k views
5 votes
Identify the sequence graphed below and the average rate of change from n = 0 to n = 2.

coordinate plane showing the point 1, 10, point 2, 5, and point 4, 1.25

(5 points)

an = 10( one half )n − 1; average rate of change is fifteen halves
an = 10( one half )n − 1; average rate of change is negative fifteen halves
an = 20( one half )n − 1; average rate of change is fifteen halves
an = 20( one half )n − 1; average rate of change is negative fifteen halves

User Ysakhno
by
7.6k points

2 Answers

5 votes

Answer:

an = 10( one half )n − 1; average rate of change is negative fifteen halves

User Harshana Narangoda
by
8.1k points
4 votes
The answer would be: an = 10( one half )n − 1; average rate of change is negative fifteen halves.

This question is about exponent function/series. You are given 3 points from the function, point A (1,10), point B( 2, 5) and point C(4,1.25).
If you insert point A to the function,
an = 10( one half )^n − 1 will give a result of 10 for n=1.

For n=0, the result would be:
an = 10( one half )^n − 1
an= 10(1/2)^0-1
an= 10(1/2)^-1= 10* 2= 20

Then the average rate of change from n=0 to n=2 would be:
Rate of change= (y2-y1)/ (x2-x1)
Rate of change= (5-20)/ (2-0)= -15/2= negative fifteen halves
User Nestor Perez
by
7.8k points