5.3k views
4 votes
A rectangle is drawn so that the width is 1 feet shorter than the length. the area of the rectangle is 90 square feet. find the length of the rectangle.

2 Answers

4 votes

Final answer:

The length of the rectangle is found by setting up a quadratic equation using the area 90 square feet and the relationship that the width is one foot shorter than the length. The length turns out to be 10 feet.

Step-by-step explanation:

To find the length of the rectangle given that the area is 90 square feet and the width is 1 foot shorter than the length, we can set up an equation. Let length be L and width be W. The width is one foot shorter than the length, so W = L - 1. The area of a rectangle is Length × Width, that is L × W, so:

L × (L - 1) = 90

L^2 - L - 90 = 0

Solving this quadratic equation, we find that the positive solution is L = 10 feet. Therefore, the length of the rectangle is 10 feet.

User NotWoods
by
8.5k points
4 votes
idk sorry i couldn't be no help
User MarckK
by
7.6k points

No related questions found