42.6k views
0 votes
Write the equation of a horizontal ellipse with a major axis of 30, a minor axis of 14, and a center at (-9, -7

User Neetika
by
7.8k points

1 Answer

3 votes
recall that the major axis is "a + a" or 2a, whilst the minor axis is "b + b" or 2b.

so if the major axis is 30, then a = 15, and if the minor one is 14, b = 7.


\bf \textit{ellipse, horizontal major axis} \\\\ \cfrac{(x-{{ h}})^2}{{{ a}}^2}+\cfrac{(y-{{ k}})^2}{{{ b}}^2}=1 \qquad \begin{cases} center\ ({{ h}},{{ k}})\\ vertices\ ({{ h}}\pm a, {{ k}}) \end{cases}\\\\ -------------------------------\\\\ \textit{we know that } \begin{cases} a=(30)/(2)\\ b=(14)/(2)\\ h=-9\\ k=-7 \end{cases}\implies \cfrac{[x-(-9)]^2}{15^2}+\cfrac{[y-(-7)]^2}{7^2}=1 \\\\\\ \cfrac{(x+9)^2}{225}+\cfrac{(y+7)^2}{49}=1
User Imperative
by
9.2k points

No related questions found