118k views
0 votes
Describe how to transform the graph of f into the graph of g.

f(x) = x^2 and g(x) = -(-x)2

1 Answer

2 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)={{ A}}({{ B}}x+{{ C}})+{{ D}} \\\\ ~~~~y={{ A}}({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)={{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\\\ f(x)={{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\\\ f(x)={{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ ~~~~~~if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ ~~~~~~if\ {{ D}}\textit{ is negative, downwards}\\\\ ~~~~~~if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}

with that template in mind, let's check,


\bf f(x)=x^2\implies f(x)=\stackrel{A}{1}(\stackrel{B}{1}x\stackrel{C}{+0})^2\stackrel{D}{+0} \\\\\\ g(x)=-(-x)^2\implies g(x)=\stackrel{A}{-1}(\stackrel{B}{-1}x\stackrel{C}{+0})^2\stackrel{D}{+0}

A became -1, reflection over the x-axis

B became -1, reflection over the y-axis

so g(x) is just f(x) upside-down and right-side to the left, check the picture below.


Describe how to transform the graph of f into the graph of g. f(x) = x^2 and g(x) = -(-x-example-1
User Abder KRIMA
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories