222k views
3 votes
Evaluate the integral x^2(x^3+9)^1/2

User Philsch
by
8.2k points

1 Answer

3 votes

\bf \displaystyle \int x^2(x^3+9)^{(1)/(2)}\cdot dx\\\\ -------------------------------\\\\ u=x^3+9\implies \cfrac{du}{dx}=3x^2\implies \cfrac{du}{3x^2}=dx\\\\ -------------------------------\\\\


\bf \displaystyle \int \underline{x^2}(u)^{(1)/(2)}\cdot \cfrac{du}{3\underline{x^2}}\implies \int \cfrac{u^{(1)/(2)}}{3}\cdot du\implies \cfrac{1}{3}\int u^{(1)/(2)}\cdot du \\\\\\ \cfrac{1}{3}\cdot \cfrac{u^{(3)/(2)}}{(3)/(2)}\implies \cfrac{1}{3}\cdot \cfrac{2√(u^3)}{3}\implies \cfrac{2√(u^3)}{9}\implies \cfrac{2√((x^3+9)^3)}{9}+C
User Abi Chhetri
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories