93.8k views
3 votes
Verify the identity cot(x-pi/2)=-tan x

User Stin
by
7.4k points

1 Answer

3 votes
To verify the identity we need the following identities:

i)
\displaystyle{ \cot(x)= (\cos x)/(\sin x)

ii)
\displaystyle{ \sin (x-y)=\ sinx\cdot\ cosy -\ siny\cdot\ cosx

iii)
\displaystyle{ \cos (x-y)=\ cosx\cdot \ cosy +\ sinx\cdot\ siny.

Also, we have know that
\displaystyle{ \sin ( \pi )/(2)=1 and
\displaystyle{ \cos ( \pi )/(2)=0.


Thus,
\displaystyle{ \cot(x-(\pi)/(2))= (\cos (x-(\pi)/(2)))/(\sin (x-(\pi)/(2)))

By (ii) and (iii) we have:


\displaystyle{ (\cos (x-(\pi)/(2)))/(\sin (x-(\pi)/(2)))= (\ cosx\cdot \ cos(\pi)/(2) +\ sinx\cdot\ sin(\pi)/(2))/(\ sinx\cdot\ cos(\pi)/(2) -\ sin(\pi)/(2)\cdot\ cosx) = (\ sinx)/(-\cos x)

by simplifying
\displaystyle{ \sin ( \pi )/(2)=1 and
\displaystyle{ \cos ( \pi )/(2)=0.

Now,
\displaystyle{ (\ sinx)/(-\cos x) is clearly -tanx.
User Parchambeau
by
8.0k points