141k views
4 votes
What is the minimal mass of helium (density 0.18 kg/m3) needed to lift a balloon carrying two people in a basket, if the total mass of people, basket, and balloon (but not gas) is 300 kg ? the density of the air is 1.2 kg/m3?

User GCoh
by
7.7k points

1 Answer

7 votes

Answer:
M[min] = M[basket+people+ balloon, not gas] * ΔR/R[b]
ΔR is the difference in density between the gas inside and surrounding the balloon.
R[b] is the density of gas inside the baloon.
====================================
Let V be the volume of helium required.
Upthrust on helium = Weight of the volume of air displaced = Density of air * g * Volume of helium = 1.225 * g * V
U = 1.225gV newtons
----
Weight of Helium = Volume of Helium * Density of Helium * g
W[h] = 0.18gV N
Net Upward force produced by helium, F = Upthrust - Weight = (1.225-0.18) gV = 1.045gV N -----


Weight of 260kg = 2549.7 N
Then to lift the whole thing, F > 2549.7
So minimal F would be 2549.7
----
1.045gV = 2549.7
V = 248.8 m^3
Mass of helium required = V * Density of Helium = 248.8 * 0.18 = 44.8kg (3sf)
=====
Let the density of the surroundings be R
Then U-W = (1-0.9)RgV = 0.1RgV
So 0.1RgV = 2549.7 N
V = 2549.7 / 0.1Rg
Assuming that R is again 1.255, V = 2071.7 m^3
Then mass of hot air required = 230.2 * 0.9R = 2340 kg
Notice from this that M = 2549.7/0.9Rg * 0.1R so
M[min] = Weight of basket * (difference in density between balloon's gas and surroundings / density of gas in balloon)
M[min] = M[basket] * ΔR/R[b]
User Maxspan
by
8.1k points