Answer:
Use the quadratic formula
=−±2−4√2
x=−b±b2−4ac2ax=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
2+5+6=0
x2+5x+6=0x^{2}+5x+6=0x2+5x+6=0
=1
a=1a={\color{#c92786}{1}}a=1
=5
b=5b={\color{#e8710a}{5}}b=5
=6
c=6c={\color{#129eaf}{6}}c=6
=−5±52−4⋅1⋅6√2⋅1
2
Simplify
3
Separate the equations
4
Solve
Solution
=−2=−3
Explanation: