165k views
5 votes
4 cos x - 2 sec x =0

User Bp Zhang
by
8.1k points

2 Answers

0 votes
4 cos x - 2 sec x =0 . Note that sec x = 1/(cos x)
4 cos x - 2(1/cos x) = 0 → 4 cos x -2/cos x = 0
Same denominator:

(4.cos x).cos x - 2 = 0

4.cos² x = 2
cos² x = 1/2 → cos x = √1/2 → cos x = 1/√2 = (√2)/√2.√2 = (√2)/2

cos (√2/2) = 45° or π/4


User Andrew Strong
by
7.7k points
7 votes

\bf sec(\theta)=\cfrac{1}{cos(\theta)}\\\\ -------------------------------\\\\ 4cos(x)-2sec(x)=0\implies 4cos(x)-2\cfrac{1}{cos(x)}=0 \\\\\\ 4cos(x)-\cfrac{2}{cos(x)}=0\implies \cfrac{4cos^2(x)-2}{cos(x)}=0 \\\\\\ 4cos^2(x)-2=0\implies 4cos^2(x)=2\implies cos^2(x)=\cfrac{2}{4}


\bf cos^2(x)=\cfrac{1}{2}\implies cos(x)=\pm\sqrt{\cfrac{1}{2}}\implies cos(x)=\pm\cfrac{√(1)}{√(2)} \\\\\\ cos(x)=\pm\cfrac{1}{√(2)}\impliedby \textit{and rationalizing the denominator} \\\\\\ cos(x)=\pm\cfrac{√(2)}{2}\implies \measuredangle x= \begin{cases} (\pi )/(4)\\\\ (3\pi )/(4)\\\\ (5\pi )/(4)\\\\ (7\pi )/(4) \end{cases}
User Alex Beauchemin
by
8.7k points