313,446 views
8 votes
8 votes
Using l'hopital rule a) compute lim x-> 0 (cos(x)-1)/x^2b) compute lim x->0+ (2x+1)^5/x

User Bach
by
2.4k points

1 Answer

26 votes
26 votes

We will solve as follows:


\lim _(x\to0)((\cos(x)-1)/(x^2))=\lim _(x\to0)((-\sin(x))/(2x))=\lim _(x\to0)((-\cos(x))/(2))=(-\cos (0))/(2)=-(1)/(2)

And for the second problem:


\lim _(x\to0+)(((2x+1)^5)/(x))=\lim _(x\to0+)((10(2x+1)^4)/(1))=10(2(0)+1)^4=10

User Adam Coulombe
by
2.8k points