205k views
5 votes
Find the flux of f = xy i + yz j + zxk out of a sphere of radius 3 centered at the origin.

User Iveqy
by
8.0k points

1 Answer

7 votes
The sphere is presumably closed, so we can use the divergence theorem.


\\abla\cdot\mathbf f=(\partial(xy))/(\partial x)+(\partial(yz))/(\partial y)+(\partial(xz))/(\partial z)

\\abla\cdot\mathbf f=x+y+z

Now convert to spherical coordinates:


x=\rho\cos\theta\sin\varphi

y=\rho\sin\theta\sin\varphi

z=\rho\cos\varphi

The flux is then given by the volume integral,


\displaystyle\iint_(x^2+y^2+z^2=9)\mathbf f\cdot\mathrm d\mathbf S=\iiint_(x^2+y^2+z^2\le9)(x+y+z)\,\mathrm dV

=\displaystyle\int_(\varphi=0)^(\varphi=\pi)\int_(\theta=0)^(\theta=2\pi)\int_(\rho=0)^(\rho=3)(\rho\cos\theta\sin\varphi+\rho\sin\theta\sin\varphi+\rho\cos\varphi)\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi=0
User Ying Style
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories