103k views
2 votes
Solve the system of liner equations by substitution
6x-9=y
y= -3x

User Jkazan
by
8.7k points

1 Answer

4 votes
Hello there!


\begin{bmatrix}6x-9=y\\ y=-3x\end{bmatrix}


\mathrm{Subsititute\:}y=-3x\ \textgreater \ \begin{bmatrix}6x-9=\left(-3x\right)\end{bmatrix}


Isolate\;x\;for\;6x-9=\left(-3x\right)

Simply expand (-3x) by removing the parenthesis > -3x


6x-9=-3x


\mathrm{Add\:}9\mathrm{\:to\:both\:sides} \ \textgreater \ 6x-9+9=-3x+9

Simplify!

6x=-3x+9


\mathrm{Add\:}3x\mathrm{\:to\:both\:sides} \ \textgreater \ 6x+3x=-3x+9+3x

Simplify again!

9x = 9


\mathrm{Divide\:both\:sides\:by\:}9 \ \textgreater \ (9x)/(9)=(9)/(9)

Simplify again!

x = 1


\mathrm{For\:}y=-3x,\mathrm{subsititute\:}x=1 \ \textgreater \ y=-3\cdot \:1\quad \Rightarrow \quad y=-3

Therefore our solutions are...

x=1,\:y=-3

Hope this helps!
Done by substitution as requested.
User Xavier Priour
by
8.8k points

No related questions found