463,758 views
35 votes
35 votes
Please help me with my calculus homeworkI am paying close attentionThanks a lot

Please help me with my calculus homeworkI am paying close attentionThanks a lot-example-1
User Takecare
by
2.6k points

1 Answer

16 votes
16 votes


(1)/(8)\sin ^4(2x)+c

Step-by-step explanation


\int \sin ^3(2x)\cos (2x)dx

Step 1

substitute

Let


\begin{gathered} u=\sin (2x) \\ \text{hence} \\ du=\cos (2x)\cdot2\cdot dx \\ du=2\cos (2x)dx \\ \text{divide both sides by 2} \\ (du)/(2)=(2\cos(2x))/(2)dx \\ (du)/(2)=\cos (2x)dx \end{gathered}

Step 2

now, replace using the new variable(u)


\begin{gathered} \int \sin ^3(2x)\cos (2x)dx \\ \int u^3(du)/(2) \end{gathered}

take out the 1/2 from the integral


\begin{gathered} \int u^3(du)/(2) \\ \int u^3(du)/(2)=(1)/(2)\int u^3du \\ (1)/(2)\int u^3du \end{gathered}

finally, solve the simple integral

and rewrite using the original variable( x)

so


\begin{gathered} (1)/(2)\int u^3du \\ (1)/(2)((u^4)/(4))+c \end{gathered}

rewrite using x


\begin{gathered} (1)/(2)((u^4)/(4))+c \\ (1)/(8)(u^4)+c \\ (1)/(8)(\sin ^4(2x))+c \\ (1)/(8)\sin ^4(2x)+c \end{gathered}

therefore, the answer is


(1)/(8)\sin ^4(2x)+c

I hope this helps you

User Swogger
by
3.1k points