95.5k views
1 vote
Describe the transformation of the following vertex equation f(x)=(x-10)^2+15

User Allwin
by
8.4k points

1 Answer

4 votes

\bf ~~~~~~~~~~~~\textit{function transformations} \\\\\\ % templates f(x)={{ A}}({{ B}}x+{{ C}})+{{ D}} \\\\ ~~~~y={{ A}}({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)={{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\\\ f(x)={{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\\\ f(x)={{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ ~~~~~~\textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ ~~~~~~if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ ~~~~~~if\ {{ D}}\textit{ is negative, downwards}\\\\ ~~~~~~if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}

with that template in mind, let's check,


\bf \stackrel{\stackrel{parent~function}{g(x)=x^2}}{g(x)=\stackrel{A}{1}(\stackrel{B}{1}x\stackrel{C}{+0})^2\stackrel{D}{+0}}\qquad \qquad \qquad \qquad f(x)=\stackrel{A}{1}(\stackrel{B}{1}x\stackrel{C}{-10})\stackrel{D}{+15}

notice, A and B are the same, just 1.

but C is -10, and D is +15

horizontal shift by C/B or -10/1 or -10, 10 units to the right.

vertical shift of D, or +15, upwards 15 units.
User Pratik Khadloya
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories