1.2k views
4 votes
Find the area of the largest rectangle with lower base on the x axis and upper vertices on the parabola y=12-x^2

1 Answer

6 votes
Draw a picture of the downward-facing parabola, and of a rectangle of the type described. Let (x,y) be the upper right-hand corner of the rectangle. Then by symmetry, the base of the rectangle has length 2x, and the height is y, that is, 12−x2. So the area A(x) of the rectangle is given by A(x)=2x(12−x2).
User Thisizkp
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories