346,911 views
7 votes
7 votes
Find a polynomial function of degree 3 with the given numbers as zeros. Assume that the leading coefficient is 1.

Find a polynomial function of degree 3 with the given numbers as zeros. Assume that-example-1
User Makarov Sergey
by
3.2k points

1 Answer

15 votes
15 votes

Given the following zeros:

-1, 4, 8

Let's determine the polynomial function.

We get,

zeros: -1, 4, 8

It will become,


\text{ \lparen x + 1\rparen\lparen x - 4\rparen\lparen x - 8\rparen}

We get,


\text{ \lparen x + 1\rparen\lparen x - 4\rparen\lparen x - 8\rparen}
\text{ \lparen x}^2\text{ - 4x + x - 4\rparen\lparen x - 8\rparen}
\text{ \lparen x}^2\text{ - 3x - 4\rparen\lparen x - 8\rparen}
\text{ x}^3\text{ - 8x}^2\text{ - 3x}^2\text{ + 24x - 4x + 32}
\text{ x}^3\text{ - 11x}^2\text{ + 20x + 32}

Therefore, the answer is: x³ - 11x² + 20x + 32

User Solarissmoke
by
3.1k points