134k views
1 vote
The angle of elevation from a point on the ground to the top of a pyramid is 27

degrees50​'
The angle of elevation from a point 126

feet farther back to the top of the pyramid is 20
degrees10​'.
Find the height of the pyramid.

User Pith
by
6.9k points

1 Answer

4 votes

Check the picture below.

let's make α = 27°50' and β = 20°10'.


\begin{array}{rllll} tan(\alpha)=\cfrac{h}{x}\implies xtan(\alpha)=h \\\\\\ tan(\beta)=\cfrac{h}{x+126}\implies (x+126)tan(\beta)=h \end{array}

since h = h, we can simply


xtan(\alpha)=(x+126)tan(\beta)\implies xtan(\alpha)=xtan(\beta)+126tan(\beta) \\\\\\ xtan(\alpha)-xtan(\beta)=126tan(\beta)\implies x[tan(\alpha)-tan(\beta)]=126tan(\beta) \\\\\\ x=\cfrac{126tan(\beta)}{tan(\alpha)-tan(\beta)} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{since we know that}}{xtan(\alpha)=h}\implies \cfrac{126tan(\beta)}{tan(\alpha)-tan(\beta)}tan(\alpha)=h \implies \cfrac{126tan(\beta)tan(\alpha)}{tan(\alpha)-tan(\beta)}=h

now, if we do the degrees and minutes conversion to just degrees for the sake of sticking it in the calculator, mind you make sure your calculator is in Degree mode, for 27°50' we get about 27.83° and for 20°10' we get 20.16°


\cfrac{126tan(\beta)tan(\alpha)}{tan(\alpha)-tan(\beta)}=h\implies \cfrac{24.4329}{0.1607}\approx h\implies 152.03\approx h

The angle of elevation from a point on the ground to the top of a pyramid is 27 degrees-example-1
User Casey Watson
by
7.6k points