125,602 views
42 votes
42 votes
A car is traveling at 50mph applies the brakes and the car decelerate at a constant rate. What is the velocity of the car 0.8mi farther along the road if the car reaches this point 1.2 min after brakes are applied?

User Prism
by
1.8k points

1 Answer

21 votes
21 votes

30 mph

Step-by-step explanation

Step 1

Draw the situation

to solve this we need to use the expession:


\begin{gathered} v_f=v_1-at \\ \text{whre v}_fis\text{ the final velocity} \\ vi\text{ is the initial velocity} \\ a\text{ is the acceleration} \\ t\text{ is the time} \end{gathered}

so

a) Set the equations

so


\begin{gathered} v_f=v \\ v_i=50\text{ mph} \\ \text{time}=0.02\text{ hours}(1.2\text{ minutes)} \\ \text{distance}=\text{ 0.8 mi} \\ \text{now, replace} \\ v_f=v_1-at \\ v=50mph-a(t_1) \\ v=50-a(0.02) \\ v=50-0.02a\rightarrow equation(1) \end{gathered}

and


\begin{gathered} v^2_f=v^2_0-2ax \\ v^2=50^(^2)-2a(0.8) \\ v^2=2500-1.6a\rightarrow equiation(1B) \end{gathered}

so, we have 2 equatonis


\begin{gathered} v=50-0.02a\rightarrow equation(1) \\ v^2=2500-1.6a\rightarrow equiation(1B) \end{gathered}

Step 2

solve the equations

a) isolate a in equation ( 1) and replace in equation (1B)

so


\begin{gathered} v=50-0.02a\rightarrow equation(1) \\ v-50=-0.02a \\ a=(v-50)/(-0.02) \\ \text{replace ine (1B)} \\ v^2=2500-1.6a\rightarrow equiation(1B) \\ v^2=2500-1.6((v-50)/(-0.02))\rightarrow equiation(1B) \\ v^2=2500+80((v-50)/(\square)) \\ v^2=2500+80v-4000 \\ v^2-80v+1500=0 \\ v=30 \end{gathered}

A car is traveling at 50mph applies the brakes and the car decelerate at a constant-example-1
User ByteNudger
by
2.8k points