176k views
4 votes
The region bounded by the given curve is rotated about the specified axis. Find the volume V of the resulting solid by any method. x2 + (y − 4)2 = 16;    about the y-axis

User Debanjan
by
9.0k points

1 Answer

5 votes

\bf x^2+(y-4)^2=16\implies x^2=16-(y-4)^2 \\\\\\ x=√(16-(y-4)^2)\implies x=√(16-(y^2-8y+16)) \\\\\\ x=√(8y-y^2)\\\\ -------------------------------\\\\ 0=√(8y-y^2)\implies 0=8y-y^2\implies 0=y(8-y) \implies y= \begin{cases} 0\\ 8 \end{cases}\\\\ -------------------------------\\\\ \displaystyle \stackrel{\textit{disk method}}{\int\limits_(0)^8~\pi (√(8y-y^2))^2\cdot dy}\implies \pi \int\limits_(0)^8~ 8y-y^2\cdot dy


\bf \displaystyle \pi \int\limits_(0)^8~8y\cdot dy - \pi \int\limits_(0)^8~y^2\cdot dy\implies \pi \left[ 4y^2~-~\cfrac{y^3}{3} \right]_(0)^8 \\\\\\ \pi \left[ \left[ 256-\cfrac{51}{3} \right]~-~[0] \right]\implies \pi \cdot \cfrac{256}{3}\implies \cfrac{256\pi }{3}\implies 85(\pi )/(3)
User Jon Heller
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories