212k views
0 votes
Can someone please help me with the following problem and explain how you got your answer?

5/4b + 7 = 7/8b + 19

b= ?

2 Answers

4 votes

\mathrm{Subtract\:}7\mathrm{\:from\:both\:sides} \ \textgreater \ (5)/(4)b+7-7=(7)/(8)b+19-7 \ \textgreater \ Simplify


(5)/(4)b+7-7 \ \textgreater \ \mathrm{Add\:similar\:elements:}\:7-7=0 \ \textgreater \ (5)/(4)b


(7)/(8)b+19-7 \ \textgreater \ \mathrm{Add/Subtract\:the\:numbers:}\:19-7=12 \ \textgreater \ (7)/(8)b+12


(5)/(4)b=(7)/(8)b+12


\mathrm{Subtract\:}(7)/(8)b\mathrm{\:from\:both\:sides} \ \textgreater \ (5)/(4)b-(7)/(8)b=(7)/(8)b+12-(7)/(8)b \ \textgreater \ Simplify


(5)/(4)b-(7)/(8)b \ \textgreater \ \mathrm{Factor\:out\:common\:term\:}b\ \textgreater \ b\left((5)/(4)-(7)/(8)\right)


(5)/(4)-(7)/(8) \ \textgreater \ \mathrm{Factor\:each\:denominator\:into\:its\:primes} \ \textgreater \ 4=2^2 \ \textgreater \ 8=2^3


\mathrm{Find\:the\:least\:common\:denominator\:}2^3=8


\mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \ (5\cdot \:2)/(8)-(7)/(8)


\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: (a)/(c)\pm (b)/(c)=(a\pm \:b)/(c)

(2\cdot \:5-7)/(8) \ \textgreater \ \mathrm{Multiply\:the\:numbers:}\:2\cdot \:5=10 \ \textgreater \ 10-7 \ \textgreater \ 3\ \textgreater \ (3)/(8)

(3)/(8)b


(7)/(8)b+12-(7)/(8)b \ \textgreater \ \mathrm{Add\:similar\:elements:}\:(7)/(8)b-(7)/(8)b=0 \ \textgreater \ 12 \ \textgreater \ (3)/(8)b=12


\mathrm{Multiply\:both\:sides\:by\:}8 \ \textgreater \ 8\cdot (3)/(8)b=12\cdot \:8 \ \textgreater \ \mathrm{Simplify} \ \textgreater \ 3b=96


\mathrm{Divide\:both\:sides\:by\:}3 \ \textgreater \ (3b)/(3)=(96)/(3) \ \textgreater \ Simplify \ \textgreater \ b=32

Hope this helps!
User Ryan Maloney
by
8.3k points
7 votes
First you subtract 7 minus 19 and 7/8b minus 5/4b:
5/4b+7=7/8b+19
-7/8b -7/8b

5/4b+7=7/8b+19
-7 -7
3/8b=12
Then you divide 12 by 3/8:
b=32
User Leatrice
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories