128k views
2 votes
Can you solve this?????
8x-6y=20 and -16x+7y=30: Answer this please please!

User Nick Moore
by
8.3k points

1 Answer

5 votes

\begin{bmatrix}8x-6y=20\\ -16x+7y=30\end{bmatrix}


Isolate\;x\;for\;8x-6y=20 \ \textgreater \ \mathrm{Add\:}6y\mathrm{\:to\:both\:sides}

8x-6y+6y=20+6y \ \textgreater \ \mathrm{Simplify} \ \textgreater \ 8x=20+6y

\mathrm{Divide\:both\:sides\:by\:}8 \ \textgreater \ (8x)/(8)=(20)/(8)+(6y)/(8) \ \textgreater \ Simplify


(8x)/(8) \ \textgreater \ \mathrm{Divide\:the\:numbers:}\:(8)/(8)=1 \ \textgreater \ x


(20)/(8)+(6y)/(8) \ \textgreater \ \mathrm{Apply\:rule}\:(a)/(c)\pm (b)/(c)=(a\pm \:b)/(c) \ \textgreater \ (20+6y)/(8) \ \textgreater \ Factor

20+6y \ \textgreater \ Rewrite \ \textgreater \ 2\cdot \:10+2\cdot \:3y \ \textgreater \ \mathrm{Factor\:out\:common\:term\:}2

2\left(3y+10\right) \ \textgreater \ (2\left(3y+10\right))/(8) \ \textgreater \ \mathrm{Cancel\:the\:common\:factor:}\:2 \ \textgreater \ x = (3y+10)/(4)

So now..

\mathrm{Subsititute\:}x=(3y+10)/(4) \ \textgreater \ \begin{bmatrix}-16\cdot (3y+10)/(4)+7y=30\end{bmatrix}


Isolate\;y\;for\;-16\cdot (3y+10)/(4)+7y=30


16\cdot (3y+10)/(4) \ \textgreater \ \mathrm{Multiply\:fractions}:\ \:a\cdot (b)/(c)=(a\:\cdot \:b)/(c) \ \textgreater \ (\left(3y+10\right)\cdot \:16)/(4)

\mathrm{Divide\:the\:numbers:}\:(16)/(4)=4 \ \textgreater \ 4\left(3y+10\right) \ \textgreater \ -4\left(3y+10\right)+7y=30


Expand\;-4\left(3y+10\right)+7y \ \textgreater \ -4\left(3y+10\right)


\mathrm{Distribute\:parentheses\:using}: \:a\left(b+c\right)=ab+ac

Where\;a=-4,\:b=3y,\:c=10 \ \textgreater \ -4\cdot \:3y-4\cdot \:10


-4\cdot \:3y-4\cdot \:10 \ \textgreater \ \mathrm{Multiply\:the\:numbers:}\:4\cdot \:3=12 \ \textgreater \ -12y-4\cdot \:10

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:10=40 \ \textgreater \ -12y-40 \ \textgreater \ -12y-40+7y


Simplify\;-12y-40+7y \ \textgreater \ \mathrm{Group\:like\:terms} \ \textgreater \ -12y+7y-40

\mathrm{Add\:similar\:elements:}\:-12y+7y=-5y \ \textgreater \ -5y-40 \ \textgreater \ -5y-40 = 30


\mathrm{Add\:}40\mathrm{\:to\:both\:sides} \ \textgreater \ -5y-40+40=30+40 \ \textgreater \ -5y=70


\mathrm{Divide\:both\:sides\:by\:}-5 \ \textgreater \ (-5y)/(-5)=(70)/(-5) \ \textgreater \ Simplify \ \textgreater \ y=-14


\mathrm{For\:}x=(3y+10)/(4) \ \textgreater \ \mathrm{Subsititute\:}y=-14 \ \textgreater \ x=(3\left(-14\right)+10)/(4)\quad \Rightarrow \quad x=-8


Therefore\;the\:solutions\;are\;\ \textgreater \ y=-14,\:x=-8

Hope this helps!
User Sagar Jogadia
by
8.2k points