128k views
2 votes
Can you solve this?????
8x-6y=20 and -16x+7y=30: Answer this please please!

User Nick Moore
by
8.3k points

1 Answer

5 votes

\begin{bmatrix}8x-6y=20\\ -16x+7y=30\end{bmatrix}


Isolate\;x\;for\;8x-6y=20 \ \textgreater \ \mathrm{Add\:}6y\mathrm{\:to\:both\:sides}

8x-6y+6y=20+6y \ \textgreater \ \mathrm{Simplify} \ \textgreater \ 8x=20+6y

\mathrm{Divide\:both\:sides\:by\:}8 \ \textgreater \ (8x)/(8)=(20)/(8)+(6y)/(8) \ \textgreater \ Simplify


(8x)/(8) \ \textgreater \ \mathrm{Divide\:the\:numbers:}\:(8)/(8)=1 \ \textgreater \ x


(20)/(8)+(6y)/(8) \ \textgreater \ \mathrm{Apply\:rule}\:(a)/(c)\pm (b)/(c)=(a\pm \:b)/(c) \ \textgreater \ (20+6y)/(8) \ \textgreater \ Factor

20+6y \ \textgreater \ Rewrite \ \textgreater \ 2\cdot \:10+2\cdot \:3y \ \textgreater \ \mathrm{Factor\:out\:common\:term\:}2

2\left(3y+10\right) \ \textgreater \ (2\left(3y+10\right))/(8) \ \textgreater \ \mathrm{Cancel\:the\:common\:factor:}\:2 \ \textgreater \ x = (3y+10)/(4)

So now..

\mathrm{Subsititute\:}x=(3y+10)/(4) \ \textgreater \ \begin{bmatrix}-16\cdot (3y+10)/(4)+7y=30\end{bmatrix}


Isolate\;y\;for\;-16\cdot (3y+10)/(4)+7y=30


16\cdot (3y+10)/(4) \ \textgreater \ \mathrm{Multiply\:fractions}:\ \:a\cdot (b)/(c)=(a\:\cdot \:b)/(c) \ \textgreater \ (\left(3y+10\right)\cdot \:16)/(4)

\mathrm{Divide\:the\:numbers:}\:(16)/(4)=4 \ \textgreater \ 4\left(3y+10\right) \ \textgreater \ -4\left(3y+10\right)+7y=30


Expand\;-4\left(3y+10\right)+7y \ \textgreater \ -4\left(3y+10\right)


\mathrm{Distribute\:parentheses\:using}: \:a\left(b+c\right)=ab+ac

Where\;a=-4,\:b=3y,\:c=10 \ \textgreater \ -4\cdot \:3y-4\cdot \:10


-4\cdot \:3y-4\cdot \:10 \ \textgreater \ \mathrm{Multiply\:the\:numbers:}\:4\cdot \:3=12 \ \textgreater \ -12y-4\cdot \:10

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:10=40 \ \textgreater \ -12y-40 \ \textgreater \ -12y-40+7y


Simplify\;-12y-40+7y \ \textgreater \ \mathrm{Group\:like\:terms} \ \textgreater \ -12y+7y-40

\mathrm{Add\:similar\:elements:}\:-12y+7y=-5y \ \textgreater \ -5y-40 \ \textgreater \ -5y-40 = 30


\mathrm{Add\:}40\mathrm{\:to\:both\:sides} \ \textgreater \ -5y-40+40=30+40 \ \textgreater \ -5y=70


\mathrm{Divide\:both\:sides\:by\:}-5 \ \textgreater \ (-5y)/(-5)=(70)/(-5) \ \textgreater \ Simplify \ \textgreater \ y=-14


\mathrm{For\:}x=(3y+10)/(4) \ \textgreater \ \mathrm{Subsititute\:}y=-14 \ \textgreater \ x=(3\left(-14\right)+10)/(4)\quad \Rightarrow \quad x=-8


Therefore\;the\:solutions\;are\;\ \textgreater \ y=-14,\:x=-8

Hope this helps!
User Sagar Jogadia
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories