229k views
2 votes
How do you factor 2x^3+5y^3

1 Answer

5 votes
All you do is...

\mathrm{Apply\:sum\:of\:cubes\:rule:\:}x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)


2x^3+5y^3=\left(\sqrt[3]{2}x+\sqrt[3]{5}y\right)\left(\left(\sqrt[3]{2}\right)^2x^2-\sqrt[3]{2}\sqrt[3]{5}xy+\left(\sqrt[3]{5}\right)^2y^2\right)

\left(\sqrt[3]{2}x+\sqrt[3]{5}y\right)\left(\left(\sqrt[3]{2}\right)^2x^2-\sqrt[3]{2}\sqrt[3]{5}xy+\left(\sqrt[3]{5}\right)^2y^2\right) \ \textgreater \ Refine


\left(\sqrt[3]{2}x+\sqrt[3]{5}y\right)\left(2^{(2)/(3)}x^2-\sqrt[3]{10}xy+5^{(2)/(3)}y^2\right)

Hope this helps!
User HassenPy
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories