153k views
5 votes
Find the indicated derivative.

Find the indicated derivative.-example-1
User Krvkir
by
8.4k points

1 Answer

3 votes

Answer:


\displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg) = ((9t - 8)^5(45t + 116))/((t + 2)^2)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg)

Step 2: Differentiate

  1. Derivative Rule [Quotient Rule]:
    \displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg) = ([(9t - 8)^6]'(t + 2) - (9t - 8)^6(t + 2)')/((t + 2)^2)
  2. Basic Power Rule [Chain Rule, Multiplied Constant]:
    \displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg) = (6(9t - 8)^5(9t - 8)'(t + 2) - (9t - 8)^6)/((t + 2)^2)
  3. Basic Power Rule [Multiplied Constant, Addition/Subtraction]:
    \displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg) = (54(9t - 8)^5(t + 2) - (9t - 8)^6)/((t + 2)^2)
  4. Factor:
    \displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg) = ((9t - 8)^5 \big[ 54(t + 2) - (9t - 8) \big] )/((t + 2)^2)
  5. Expand:
    \displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg) = ((9t - 8)^5 \big[ 54t + 108 - 9t + 8 \big] )/((t + 2)^2)
  6. Combine like terms:
    \displaystyle (d)/(dt) \bigg( ((9t - 8)^6)/(t + 2) \bigg) = ((9t - 8)^5(45t + 116))/((t + 2)^2)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Usher
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories