2.5k views
5 votes
Solve each system by elimination by multiplying both equations. eliminate y first. show all work.

10x-3y=18
6x-10y=-22

User Ferbs
by
8.4k points

1 Answer

5 votes
First
\mathrm{Multiply\:}10x-3y=18\mathrm{\:by\:}3:\quad 30x-9y=54
Then
\mathrm{Multiply\:}6x-10y=-22\mathrm{\:by\:}5:\quad 30x-50y=-110
To get
\begin{bmatrix}30x-9y=54\\ 30x-50y=-110\end{bmatrix}
So...

30x-50y=-110 \ \textgreater \ \begin{bmatrix}30x-9y=54\\ -41y=-164\end{bmatrix}

-41y=-164 \ \textgreater \ \mathrm{Divide\:both\:sides\:by\:}-41 \ \textgreater \ (-41y)/(-41)=(-164)/(-41)
To get y = 4.

\mathrm{For\:}30x-9y=54\mathrm{\:plug\:in\:} \:y=4 \ \textgreater \ 30x-9\cdot \:4=54

\mathrm{Multiply\:the\:numbers:}\:9\cdot \:4=36 \ \textgreater \ 30x-36=54 \ \textgreater \
Next
\mathrm{Add\:}36\mathrm{\:to\:both\:sides} \ \textgreater \ 30x-36+36=54+36 \ \textgreater \ \mathrm{Simplify} \ \textgreater \ 30x=90
Finally
\mathrm{Divide\:both\:sides\:by\:}30 \ \textgreater \ (30x)/(30)=(90)/(30) \ \textgreater \ x = 3
Therefore our solutions are y = 4, x = 3
User Graham Gold
by
7.6k points