136k views
5 votes
Evaluate 0.985 using the Binomial Theorem.

Write 0.98 as a binomial: (1 + _______)

User Tijin
by
7.5k points

2 Answers

4 votes

Evaluate 098^5 using the binomial theorem

-0.02

User Luiscubal
by
8.7k points
5 votes

Answer:

The value of
0.98^5 is 0.9039207968.

Explanation:

We need to find the value of
0.98^5.

According to the binomial theorem,


(a+b)^n=^nC_0a^n+^nC_(1)a^(n-1)b+...+^nC_(n-1)a^1b^(n-1)+^nC_nb^n

Write 0.98 as a binomial: (1 - 0.02)

Write 0.98 as a binomial: (1 + (-0.02))


0.98^5=(1 + (-0.02))^5

Using binomial theorem, we get


0.98^5=^5C_0(1)^5+^5C_1(1)^4(-0.02)^1+^5C_2(1)^3(-0.02)^2+^5C_3(1)^2(-0.02)^3+^5C_4(1)^1(-0.02)^4+^5C_5(1)^0(-0.02)^5


0.98^5=(1)+5(-0.02)^1+10(-0.02)^2+10(-0.02)^3+5(-0.02)^4 +1(-0.02)^5


0.98^5=(1)+(-0.1)+(0.004)+(-0.00008)+0.0000008+(-0.0000000032)


0.98^5=0.9039207968

Therefore the value of
0.98^5 is 0.9039207968.

User Shazwazza
by
7.7k points