495,186 views
6 votes
6 votes
Simplify the expression by combining the radical terms using the indicated operations(s) Assume all variables are positive.

Simplify the expression by combining the radical terms using the indicated operations-example-1
User Makesh
by
3.2k points

1 Answer

15 votes
15 votes

Answer:


38x\sqrt[]{34xy}

Explanation:

Given the below expression;


8x\sqrt[]{34xy}+3x\sqrt[]{34xy}+9x\sqrt[]{306xy}

We'll go ahead and simplify the given expression following the below steps;

Step 1: Combine like terms;


\begin{gathered} (8x\sqrt[]{34xy}+3x\sqrt[]{34xy})+9x\sqrt[]{306xy} \\ 11x\sqrt[]{34xy}+9x\sqrt[]{306xy} \end{gathered}

Step 2: Split the radicand of the second term as seen below;


\begin{gathered} 11x\sqrt[]{34xy}+9x\sqrt[]{9\cdot34\cdot xy} \\ =11x\sqrt[]{34xy}+9x(\sqrt[]{9}\cdot\sqrt[]{34xy}) \\ =11x\sqrt[]{34xy}+9x\cdot3\sqrt[]{34xy} \\ =11x\sqrt[]{34xy}+27x\sqrt[]{34xy} \end{gathered}

Step 3: Combine like terms;


\begin{gathered} 11x\sqrt[]{34xy}+27x\sqrt[]{34xy} \\ =38x\sqrt[]{34xy} \end{gathered}

User Lycon
by
3.6k points