54.6k views
0 votes
Please help!!!

1. Select the best answer for the question.
Multiply matrix D = [5,-2,1 ] by matrix E= [12] A. [4 8] B. 2 C. [5 -2 1 ,10 4 2] D. [5 10, -2 -4, 1 2]

2. Subtract [-6 -4,6 0, 6 4] - [-5 5, -4 -4,6 -4]

3. Add [1 -4,3 5] + [-2 6,-2 4]

4. Find the determinant of A= [ 4 -7, 3 -2]

A. 13
B. −2
C. 2
D. 29


5. What is matrix A + matrix B?
A=[3 0, 2 -1] B= [ 2 8, .6 3]

6. What is 4C?
c= [12 03/2, 1 -6 7]

7. Evaluate the determinant for the following matrix: [-5 1, 5 4]

8. Complete the multiplication: 2EA E= [12] A= [3 0, 2 -1]

9. Multiply [5 0 , 3 -5] x [2 -1, 2 -2]

User Vanie
by
8.9k points

2 Answers

1 vote

Final answer:

The set of problems requires understanding matrix operations, such as addition, subtraction, multiplication, and finding determinants. The answers include a mix of matrices that cannot be multiplied, matrix arithmetic resulting in new matrices, and the calculation of determinants.

Step-by-step explanation:

The problem set involves matrix operations and the determination of scalars from matrices and vectors. Here is the breakdown of the solutions:

Question 1:

Matrix D = [5, -2, 1] cannot be multiplied by matrix E = [12] since they do not conform to the rules for matrix multiplication.

Question 2:

The subtraction of the given matrices results in matrix [-1, -9, 0, 4, 0, 8].

Question 3:

The addition of [1, -4, 3, 5] and [-2, 6, -2, 4] results in matrix [-1, 2, 1, 9].

Question 4:

The determinant of matrix A = [4, -7, 3, -2] is found using the formula ad - bc, which yields 29.

Question 5:

Matrix A + matrix B is calculated as [3, 0, 2, -1] + [2, 8, 0.6, 3] to give [5, 8, 2.6, 2].

Question 6:

If C = [12, 9/2, 1, -6, 7], then 4C is [48, 18, 4, -24, 28].

Question 7:

The determinant of matrix [-5, 1, 5, 4] is calculated as (-5)(4) - (1)(5) which equals -25 + 5, giving -20.

Question 8:

Matrix E cannot be multiplied by matrix A directly due to their dimensions. A scalar multiplication by 2 followed by matrix A should be applied, leading to [6, 0, 4, -2].

Question 9:

The product of matrices [5, 0, 3, -5] and [2, -1, 2, -2] is calculated by performing the matrix multiplication, resulting in [10, -5, 16, -4].

User Steve French
by
8.1k points
4 votes
Question 1:


\left[\begin{array}{ccc}5\\-2\\1\end{array}\right] \left[\begin{array}{ccc}12\end{array}\right] = \left[\begin{array}{ccc}(5)(12)+(-2)(12)+(1)(1)\end{array}\right]
=
\left[\begin{array}{ccc}60-24+12\end{array}\right] = \left[\begin{array}{ccc}48\end{array}\right]
Answer: A
------------------------------------------------------------------------------------------------------------

Question 2

\left[\begin{array}{ccc}-6&-4\\6&0\\6&4\end{array}\right] - \left[\begin{array}{ccc}-5&5\\-4&-4\\6&-4\end{array}\right]

\left[\begin{array}{ccc}(-6--5)&(-4-5)\\(6--4)&(0--4)\\(6-6)&(4--4)\end{array}\right] = \left[\begin{array}{ccc}-1&-9\\10&4\\0&8\end{array}\right]
---------------------------------------------------------------------------------------------------------------

Question 3


\left[\begin{array}{ccc}1&-4\\3&5\end{array}\right] + \left[\begin{array}{ccc}-2&6\\-2&4\end{array}\right]
=
\left[\begin{array}{ccc}(1+-2)&(-4+6)\\(3+-2)&(5+4)\end{array}\right]
=
\left[\begin{array}{ccc}-1&2\\1&9\end{array}\right]
----------------------------------------------------------------------------------------------------------------

Question 4


A= \left[\begin{array}{ccc}4&-7\\3&-2\end{array}\right]

det A=(4)(-2)-(-7)(3)=-8+21=13

Answer: A
--------------------------------------------------------------------------------------------------------------

Question 5

\left[\begin{array}{ccc}3&0\\2&-1\end{array}\right] + \left[\begin{array}{ccc}2&8\\6&3\end{array}\right]
=
\left[\begin{array}{ccc}3+2&0+8\\2+6&(-1)+3\end{array}\right]
=
\left[\begin{array}{ccc}5&8\\8&2\end{array}\right]
---------------------------------------------------------------------------------------------------------

Question 6

4 \left[\begin{array}{ccc}12&0& (3)/(2) \\1&-6&7\end{array}\right] = \left[\begin{array}{ccc}48&0&6\\4&-24&28\end{array}\right]

________________________________________________________

Question 7


C = \left[\begin{array}{ccc}-5&1\\5&4\end{array}\right]

det C = (-5)(4) - (1)(5) = -20-5 = -25
--------------------------------------------------------------------------------------------------------------

Question 8

2 \left[\begin{array}{ccc}12\end{array}\right] \left[\begin{array}{ccc}3&0\\2&-1\end{array}\right]

\left[\begin{array}{ccc}24\end{array}\right] \left[\begin{array}{ccc}3&6\\2&-1\end{array}\right]

\left[\begin{array}{ccc}72&0\\48&-24\end{array}\right]
-------------------------------------------------------------------------------------------------------------

Question 9

\left[\begin{array}{ccc}5&0\\3&-5\end{array}\right] \left[\begin{array}{ccc}2&-1\\2&-2\end{array}\right]

\left[\begin{array}{ccc}(5)(2)+(0)(2)&(5)(-1)+(0)(-2)\\(3)(2)+(-5)(2)&(3)(-1)+(-5)(-2)\end{array}\right]

\left[\begin{array}{ccc}10+0&-5+0\\6-10&-3+10\end{array}\right] = \left[\begin{array}{ccc}10&-5\\-4&7\end{array}\right]


User Dfilkovi
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories