38.6k views
3 votes
The graph of g(x) is a transformation of the graph of f(x)=3x .

Graph of an exponential function labeled g of x. The horizontal axis ranges from negative 5 to 5 in increments of 1. The vertical axis ranges from negative 5 to 5 in increments of 1. The graph passes through begin ordered pair 2 comma 0 end ordered pair and begin ordered pair 3 comma 2 end ordered pair. These points are labeled. The graph approaches the line y equals negative 1 to the left on the graph.

Enter the equation for g(x) in the box.
g(x) =

User Rong
by
7.6k points

2 Answers

3 votes

it the one that go from -10 to 6 then up

User Djouuuuh
by
8.2k points
2 votes
When a graph is transformed, it could be translated, reflected, dilated, or rotated. However, no matter what kind of transformation that is, it does not change the nature of the graph. A line would still be a line; a curve would still be a curve. So, that is my basis for my solution. There is no need to graph the problem. You only need to find the equation of g(x) through the two points given: (2,0) and (3,2)

m = Δy/Δx = (2-0)/(3-2) = 2
Use point (2,0) to find b:
y = mx + b
0 = 2(2) + b
b = -4

So, g(x) = 2x - 4
User Bshirley
by
9.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories