39.0k views
5 votes
1. Find the length (distance) of segments AB, CD, and EF.

AB =

CD =

EF =
2. Find the midpoint of segments AB, CD, and EF.

AB =

CD =

EF =

3. Find the slope of the segments AB, CD, and EF.

AB =

CD =

EF =

1. Find the length (distance) of segments AB, CD, and EF. AB = CD = EF = 2. Find the-example-1
User Brosto
by
7.9k points

2 Answers

5 votes
1. AB = 7 units
CD= 3 units
EF= 5 units
2.AB= (-0.5, 2)
CD= (-4,-2.5)
EF=(2.5,-3)
3.AB=0
CD=undefined
EF=-4/3
User Jason Buberel
by
7.9k points
7 votes

Answer:

1) AB=7 CD=3 EF=
3√(5) 2)
M_(AB)=(-1)/(2),2
\\  M_(EF) =((5)/(2)-3) \\
\\ M_(EF) =((5)/(2)-3) 3) AB not inclined CD not inclined EF 6/5

Explanation:

1) We can use the Distance Formula to answer the 1st. question.

But in the first case AB I'd rather doing it intuitively because it is a straight line parallel to the x-axis

AB

A(-4,2) and B(3,2)

In this segment, also parallel we can calculate the length as |-4|+|3|=7 since both have the same y coordinate.

Using the Distance formula to check it:


D=\sqrt{(3--4)^(2)+(2-2)^(2)}\\D=√(49)\\D=7

CD

C(-4,-1) D(-4,-4)

Similar to the first one but this time with different y coordinates.

The length will be calculated by subtracting the absolute values for y:

|-4|-|-1|=4-1 = 3

Using the Distance formula to check it:


D=\sqrt{(-4--1)^(2)+(-4--4)^(2)}\\D=√(9)\\D=3

EF

E (1,-1) F(4,-5)

In this case there's no straight line.

So right to the Distance Formula:


D=\sqrt{(-5-1)^(2)+(4-1)^(2)}\\ D=√(36+9)\\D=√(45)\\D=3√(5)

2) To find the Midpoints we need to calculate the Mean of these two points.

AB

A(-4,2) and B(3,2)


M_(AB) =(-4+3)/(2),(2+2)/(2)\\M_(AB)=(-1)/(2),2

CD

C(-4,-1) D(-4,-4)


M_(CD) =(-4-4)/(2) ,(-1-4)/(2) \\M_(CD) =(0,(-5)/(2))

EF

E (1,-1) F(4,-5)


M_(EF) =(4+1)/(2) ,(-1-5)/(2) \\ M_(EF) =((5)/(2)-3)

3) To find the Slope let's calculate the quotient of a difference between y-coordinates over x-coordinates of two given points.


m_(AB)=(2-2)/(3--4)=(0)/(7)=0

AB is not inclined.

CD

C(-4,-1) D(-4,-4)


m_(CD)=(-4--1)/(-4--4)=(-3)/(-4+4)=(-3)/(0)

Not Defined for all Real Set of Numbers

The line CD is not inclined.

EF

E(1,-1) F(4,-5)


m_(EF)=(-5-1)/(4--1)=(6)/(5)

The line EF has a slope of 6/5

User Larand
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories