224k views
5 votes
What expression is equivalent to (^3√2^5)^1/4

What expression is equivalent to (^3√2^5)^1/4-example-1

2 Answers

2 votes

\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}}\\\\ -------------------------------\\\\ \left( \sqrt[3]{2^5} \right)^{(1)/(4)}\implies \left( 2^{(5)/(3)} \right)^{(1)/(4)}\implies 2^{(5)/(3)\cdot (1)/(4)}\implies 2^{(5)/(12)}
User Joe Saad
by
8.7k points
7 votes
soo first apply the exponent rule (2^5)^1/3*1/4
1/3*1/4= 1/12
so (2^5)^1/12
then you apply the exponent rule again 2^5*1/2
so 5*1/12= 5/12
So the answer would be 2^5/12
User Akv
by
7.4k points