79.8k views
1 vote
Find a power series solution to the differential equation at the point x0. (2+x2)y′′-xy′+4y=0

User Andrew Kew
by
8.1k points

1 Answer

1 vote

(x^2+2)y''-xy'+4y=0

I'll assume you are looking for a series centered at
x=0, which is an ordinary point for the ODE. Substituting


y=\displaystyle\sum_(n\ge0)a_nx^n

into the ODE, we can rewrite it as


\displaystyle\sum_(n\ge2)n(n-1)a_nx^n+2\sum_(n\ge2)n(n-1)a_nx^(n-2)

\,\,\,\,\,\,\,\,-\displaystyle\sum_(n\ge1)na_nx^n+4\sum_(n\ge0)a_nx^n=0


\displaystyle\sum_(n\ge2)n(n-1)a_nx^n+2\sum_(n\ge0)(n+2)(n+1)a_(n+2)x^n

\displaystyle\,\,\,\,\,\,\,\,-\sum_(n\ge1)na_nx^n+4\sum_(n\ge0)a_nx^n=0


\displaystyle4(a_0+a_2)+3(a_1+4a_3)x+\sum_(n\ge2)\bigg[2(n+2)(n+1)a_(n+2)+(n^2-2n+4)a_n\bigg]x^n=0

so the coefficients of the power series are defined by the recurrence


\begin{cases}a_0=a_0\\\\a_1=a_1\\\\a_n=-((n-3)^2+3)/(2n(n-1))a_(n-2)&\text{for }n\ge2\end{cases}

For even
n, i.e.
n=2k
(k\ge0), we have


a_0=a_0

a_2=-a_0

a_4=-\frac4{4*3*2}a_0=\frac4{4!}a_0

a_6=-(12)/(2*6*5)a_4=-(12*4)/(2*6!)a_0

a_8=-(28)/(2*8*7)a_6=(28*12*4)/(2^2*8!)a_0

and so on. The pattern in the denominator is pretty clear, but we can also find a compact form for the numerator. When
k=5, we can write it as


4*12*28*52=4^4(1*3*7*13)

=4^4\bigg(1*(1+2)*(1+2+4)*(1+2+4+6)\bigg)

=4^4\bigg(1*(1+2(1))*(1+2(1+2))*(1+2(1+2+3)\bigg)

=4^4\displaystyle\prod_(i=1)^3\left(1+2\sum_(j=1)^(i-1)j\right)

=4^4\displaystyle\prod_(i=1)^3(i^2-i+1)

So in general we have


a_(2k)=((-1)^k2^k\displaystyle\prod_(i=1)^(k-1)(i^2-i+1))/((2k)!)

We can treat the odd-indexed terms similarly. For
n=2k-1
(k\ge1) we have


a_1=a_1

a_3=-\frac14a_1=-\frac3{2*3*2}a_1=-\frac3{2*3!}a_1

a_5=-\frac7{2*5*4}a_3=(7*3)/(2^2*5!)a_1

a_7=-(19)/(2*7*6)a_5=-(19*7*3)/(2^3*7!)a_1

and so on. Again, the pattern in the denominator is simple. For
k=5, we would get a numerator of


3*7*19*39=3*(3+4)*(3+4+12)*(3+4+12+20)

=3*(3+4(1))*(3+4(1+3))*(3+4(1+3+5))

=\displaystyle\prod_(i=1)^4\left(3+4\sum_(j=1)^(i-1)(2j-1)\right)

=\displaystyle\prod_(i=1)^4(4i^2-8i+7)

and in general we'd have


a_(2k-1)=((-1)^(k+1)\displaystyle\prod_(i=1)^(k-1)(4i^2-8i+7))/(2^(k-1)(2k-1)!)

Thus the power series solution to this ODE is


y(x)=\displaystyle\sum_(k\ge0)a_(2k)x^(2k)+\sum_(k\ge1)a_(2k-1)x^(2k-1)

Attached below is a plot of a numerical solution (blue) compared to the first 9 terms
(0\le n\le8) and first 21 terms
(0\le n\le21) of the series solution over the interval
|x|\le3, assuming initial values of
y(0)=y'(0)=1
(a_0=a_1=1).
Find a power series solution to the differential equation at the point x0. (2+x2)y-example-1
User Radious
by
7.8k points