67.9k views
0 votes
(1 point) consider the function f(t)=⎧⎩⎨⎪⎪⎪⎪0,−5,−6,6,t<00≤t<11≤t<7t≥7;f(t)={0,t<0−5,0≤t<1−6,1≤t<76,t≥7; 1. write the function in terms of unit step function

1 Answer

2 votes

f(t)=\begin{cases}0&amp;\text{for }t<0\\-5&amp;\text{for }0\le t<1\\-6&amp;\text{for }1\le t<7\\6&amp;\text{for }t\ge7\end{cases}

Recall that


u(t)=\begin{cases}0&amp;\text{for }t<0\\1&amp;\text{for }t\ge0\end{cases}

Take it one piece at a time. For
t\ge0, we can scale
u(t) by -5:


-5u(t)=\begin{cases}0&amp;\text{for }t<0\\-5&amp;\text{for }t\ge0\end{cases}

If we shift the argument by 1 and scale by -5, we have


-5u(t-1)=\begin{cases}0&amp;\text{for }t<1\\-5&amp;\text{for }t\ge1\end{cases}

so if we subtract this from
-5u(t), we'll end up with


-5u(t)+5u(t-1)=\begin{cases}0&amp;\text{for }t<0\text{ and }t\ge1\\-5&amp;\text{for }0\le t<1\end{cases}

For the next piece, we can add another scaled and shifted step like


-6u(t-1)+6u(t-7)=\begin{cases}0&amp;\text{for }t<1\text{ and }t\ge7\\-6&amp;\text{for }1\le t<7\end{cases}

so that


-5u(t)+5u(t-1)-6u(t-1)+6u(t-7)=\begin{cases}0&amp;\text{for }t<0\text{ and }t\ge7\\-5&amp;\text{for }0\le t<1\\-6&amp;\text{for }1\le t<7\end{cases}

For the last piece, we add one more term:


6u(t-7)=\begin{cases}0&amp;\text{for }t<7\\6&amp;\text{for }t\ge7\end{cases}

and so putting everything together, we get
f(t):


f(t)\equiv-5u(t)+5u(t-1)-6u(t-1)+6u(t-7)+6u(t-7)

f(t)\equiv-5u(t)-u(t-1)+12u(t-7)
User Oya
by
8.6k points