102k views
1 vote
Evaluate the surface integral s is the triangular region with vertices (1, 0, 0), (0, 5, 0), (0, 0, 5)

User Bnabilos
by
7.8k points

1 Answer

4 votes
With no specific integrand given, I'm assuming you need only find the area of
\mathcal S, in which case we can parameterize the surface by


\mathbf s(u,v)=(\langle1,0,0\rangle(1-u)+\langle0,5,0\rangle u)(1-v)+\langle0,0,5\rangle v

\mathbf s(u,v)=\langle(1-u)(1-v),5u(1-v),5v\rangle

with
0\le u\le1,0\le v\le1. Then the area of
\mathcal S is given by


\displaystyle\iint_(\mathcal S)\mathrm dS=\int_([0,1]^2)\|\mathbf s_u*\mathbf s_v\|\,\mathrm dv\,\mathrm du

\displaystyle=15\sqrt3\int_(u=0)^(u=1)\int_(v=0)^(v=1)(1-v)\,\mathrm dv\,\mathrm du=\frac{15\sqrt3}2
User PiotrDomo
by
8.2k points

No related questions found