128k views
1 vote
What is the perimeter of a polygon with vertices at (-6,-1) (-3,-4) (6,5) and (3,8) ​?

User Thammarith
by
8.4k points

1 Answer

4 votes
The formula of the distance between 2 points states that the distance AB between points A(a, b) and B(c, d) is found as follows:


\displaystyle{ AB= √((a-c)^2+(b-d)^2).


Let the points of the polygon be A(-6,-1), B(-3,-4), C(6,5) and D(3,8). Then, the perimeter of the polygon ABCD is

AB+BC+CD+DA.

We can find each of AB, BC, CD, DA by the Distance Formula as follows:



\displaystyle{ AB= √((-6+3)^2+(-1+4)^2)=√(9+9)=√(2\cdot9)=3√(2).


\displaystyle{ AB= √((6+3)^2+(5+4)^2)=√(81+81)=√(2\cdot81)=9√(2).


\displaystyle{ AB= √((6-3)^2+(5-8)^2)=√(9+9)=3√(2).


\displaystyle{ AB= √((-6-3)^2+(-1-8)^2)=√(81+81)=9√(2).


Thus, the perimeter of the polygon is


9√(2)+9√(2)+3√(2)+3√(2)=24√(2) (units).


Answer:
24√(2) units
User Work Of Artiz
by
8.6k points

No related questions found