139k views
0 votes
What are the possible numbers of positive, negative, and complex zeros of f(x) = x6 + x5 + x4 + 4x3 − 12x2 + 12?

User Mike Spear
by
7.6k points

1 Answer

4 votes

Answer:

2 or 0 positive zeros

4 or 2 or 0 negative zeros

complex zeros 0,2,4,6

Explanation:

f(x) = x^6 + x^5 + x^4 + 4 x^3 − 12 x^2 + 12

We use Descartes's rule of sign

LEts see the change of sign

f(x) = x^6 + x^5 + x^4 + 4 x^3 − 12 x^2 + 12

In f(x) , there is 2 sign changes

so 2 positive zeros . then subtract 2 to get possible number of zeros

2 or 0 positive zeros

To find negative zeros replace x with -x

f(-x) = (-x)^6 + (-x)^5 + (-x)^4 + 4 (-x)^3 − 12 (-x)^2 + 12

f(x) = x^6 - x^5 + x^4 - 4 x^3 − 12 x^2 + 12

4 sign changes

4 or 2 or 0 negative zeros

complex zeros 0,2,4,6

User Crackerjack
by
7.8k points