401,180 views
23 votes
23 votes
In the diagram below, assume that all points are given in polar coordinates. Determine the rectangular coordinates for each point. Visually check your answers to ensure they make sense.(r,θ)=(2,π/6) corresponds to (x,y)=(r,θ)=(2.4,π/2) corresponds to (x,y)=(r,θ)=(4.4,13π/12) corresponds to (x,y)=(r,θ)=(4.4,5π/3) corresponds to (x,y)=

In the diagram below, assume that all points are given in polar coordinates. Determine-example-1
User Moode Osman
by
2.8k points

1 Answer

16 votes
16 votes

The rectangular coordinates of the polar form are


x=r\cos \theta
y=r\sin \theta

a) The first point is


\begin{gathered} (2,(\pi)/(6)) \\ r=2,\theta=(\pi)/(6) \end{gathered}

Substitute them in the form above


\begin{gathered} x=2\cos ((\pi)/(6))=2(\frac{\sqrt[]{3}}{2})=\sqrt[]{3} \\ y=2\sin ((\pi)/(6))=2((1)/(2))1 \\ (x,y)=(\sqrt[]{3},1) \end{gathered}

b) The second point is


(2.4,(\pi)/(2))
\begin{gathered} x=2.4\cos ((\pi)/(2))=2.4(0)=0 \\ y=2.4\sin ((\pi)/(2))=2.4(1)=2.4 \\ (x,y)=(0,2.4) \end{gathered}

c) The third point is


(4.4,(13\pi)/(12))
\begin{gathered} x=4.4\cos ((13\pi)/(12))=4.4(-\frac{\sqrt[]{6}+\sqrt[]{2}}{4})=(-1.1\sqrt[]{6}-1.1\sqrt[]{2}) \\ y=4.4\sin ((13\pi)/(12))=4.4(\frac{-\sqrt[]{6}+\sqrt[]{2}}{4})=(-1.1\sqrt[]{6}+1.1\sqrt[]{2}) \\ (x,y)=\lbrack(-1.1\sqrt[]{6}-1.1\sqrt[]{2}),(-1.1\sqrt[]{6}+1.1\sqrt[]{2})\rbrack \end{gathered}

d) The fourth point is


(4.4,(5\pi)/(3))
\begin{gathered} x=4.4\cos ((5\pi)/(3))=4.4((1)/(2))=2.2 \\ y=4.4\sin ((5\pi)/(3))=4.4(-\frac{\sqrt[]{3}}{2})=-2.2\sqrt[]{3} \\ (x,y)=(2.2,-2.2\sqrt[]{3)} \end{gathered}

User Rajya Vardhan
by
3.1k points