104k views
1 vote
Find the minimum and maximum of f(x, y, z) = y + 4z subject to two constraints, 2x + z = 4 and x2 + y2 = 1. g

User Vgaltes
by
7.8k points

1 Answer

4 votes

L(x,y,z,\lambda_1,\lambda_2)=y+4z+\lambda_1(2x+z-4)+\lambda_2(x^2+y^2-1)


L_x=2\lambda_1+2\lambda_2 x=0\implies\lambda_1+\lambda_2x=0

L_y=1+2\lambda_2y=0

L_z=4+\lambda_1=0\implies\lambda_1=-4

L_(\lambda_1)=2x+z-4=0

L_(\lambda_2)=x^2+y^2-1=0


\lambda_1=-4\implies \lambda_2x=4\implies\lambda_2=\frac4x

1+2\lambda_2y=0\implies\lambda_2y=-\frac12\implies8y=-x


x^2+y^2=1\implies (-8y)^2+y^2=65y^2=1\implies y=\pm\frac1{√(65)}

y=\pm\frac1{√(65)}\implies x=\mp\frac8{√(65)}

2x+z=4\implies z=4\pm(16)/(√(65))

We have two critical points to consider:
\left(-\frac8{√(65)},\frac1{√(65)},4+(16)/(√(65))\right) and
\left(\frac8{√(65)},-\frac1{√(65)},4-(16)/(√(65))\right).

At these points, we respectively have a maximum of
16+√(65) and a minimum of
16-√(65).
User Spikolynn
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories