104k views
1 vote
Find the minimum and maximum of f(x, y, z) = y + 4z subject to two constraints, 2x + z = 4 and x2 + y2 = 1. g

User Vgaltes
by
7.5k points

1 Answer

4 votes

L(x,y,z,\lambda_1,\lambda_2)=y+4z+\lambda_1(2x+z-4)+\lambda_2(x^2+y^2-1)


L_x=2\lambda_1+2\lambda_2 x=0\implies\lambda_1+\lambda_2x=0

L_y=1+2\lambda_2y=0

L_z=4+\lambda_1=0\implies\lambda_1=-4

L_(\lambda_1)=2x+z-4=0

L_(\lambda_2)=x^2+y^2-1=0


\lambda_1=-4\implies \lambda_2x=4\implies\lambda_2=\frac4x

1+2\lambda_2y=0\implies\lambda_2y=-\frac12\implies8y=-x


x^2+y^2=1\implies (-8y)^2+y^2=65y^2=1\implies y=\pm\frac1{√(65)}

y=\pm\frac1{√(65)}\implies x=\mp\frac8{√(65)}

2x+z=4\implies z=4\pm(16)/(√(65))

We have two critical points to consider:
\left(-\frac8{√(65)},\frac1{√(65)},4+(16)/(√(65))\right) and
\left(\frac8{√(65)},-\frac1{√(65)},4-(16)/(√(65))\right).

At these points, we respectively have a maximum of
16+√(65) and a minimum of
16-√(65).
User Spikolynn
by
7.4k points