Answer:
![\sqrt[4]{7^5}=7^{(5)/(4)}](https://img.qammunity.org/2018/formulas/mathematics/high-school/nfsn46hjkgjfh4mb3kmnsz51mzbvp6kn5x.png)
Explanation:
Given: "the fourth root of 7 to the fifth power"
First we write as radical form and then convert into rational fraction as per rule of exponent.
![\text{the fourth root of 7 to the fifth power}=\sqrt[4]{7^5}](https://img.qammunity.org/2018/formulas/mathematics/high-school/oaj9vl4sctq4v1t30nxo912w3l52cip9lp.png)
![\sqrt[n]{x^m}](https://img.qammunity.org/2018/formulas/mathematics/high-school/kr2cqj2x23c3oy08u885sl276gpdojq2pv.png)
- m, Power goes at numerator of rational exponent.
- n , nth root goes at denominator of rational exponent.
So,
![\sqrt[n]{x^m}=x^{(m)/(n)}](https://img.qammunity.org/2018/formulas/mathematics/high-school/lwm9iztoqvnhss9lbouw11pb5txk4y6bqz.png)
In the given radical,
![\sqrt[4]{7^5}](https://img.qammunity.org/2018/formulas/mathematics/high-school/c5ytxiwwajwdcabvknokc2y1x9ehn499zq.png)
m=5 and n=4
now, we write radical as a rational exponent.
![\sqrt[4]{7^5}=7^{(5)/(4)}](https://img.qammunity.org/2018/formulas/mathematics/high-school/nfsn46hjkgjfh4mb3kmnsz51mzbvp6kn5x.png)