178k views
5 votes
Last question for today.

I need answers for this, but I also need to know how to solve it. I know the formula, I just don't quite understand how the different values fit into the formula.

Last question for today. I need answers for this, but I also need to know how to solve-example-1
User Hephalump
by
7.9k points

1 Answer

1 vote
check the picture below.


\bf \textit{Half-Angle Identities} \\ \quad \\ sin\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1-cos({{ \theta}})}{2}}\qquad cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1+cos({{ \theta}})}{2}} \\ \\ \\ tan\left(\cfrac{{{ \theta}}}{2}\right)= \begin{cases} \boxed{\pm \sqrt{\cfrac{1-cos({{ \theta}})}{1+cos({{ \theta}})}}} \\ \quad \\ \cfrac{sin({{ \theta}})}{1+cos({{ \theta}})} \\ \quad \\ \cfrac{1-cos({{ \theta}})}{sin({{ \theta}})} \end{cases}\\\\ -------------------------------\\\\


\bf cos\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1+cos(\beta)}{2}}\implies cos\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1+(4)/(5)}{2}} \\\\\\ cos\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{(9)/(5)}{2}}\implies cos\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{9}{10}}\implies cos\left( (\beta)/(2)\right)=\pm\cfrac{√(9)}{√(10)} \\\\\\ cos\left( (\beta)/(2)\right)=\pm\cfrac{3}{√(10)}\implies cos\left( (\beta)/(2)\right)=\pm\cfrac{3√(10)}{10}\\\\


\bf -------------------------------\\\\ sin\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1-cos(\beta)}{2}}\implies sin\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1-(4)/(5)}{2}} \\\\\\ sin\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{(1)/(5)}{2}}\implies sin\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1}{10}}\implies sin\left( (\beta)/(2)\right)=\pm\cfrac{√(1)}{√(10)}


\bf sin\left( (\beta)/(2)\right)=\pm\cfrac{1}{√(10)}\implies sin\left( (\beta)/(2)\right)=\pm\cfrac{√(10)}{10}\\\\ -------------------------------\\\\ tan\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1-cos(\beta)}{1+cos(\beta)}}\implies tan\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1-(4)/(5)}{1+(4)/(5)}}


\bf tan\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{(1)/(5)}{(9)/(5)}}\implies tan\left( (\beta)/(2)\right)=\pm\sqrt{\cfrac{1}{9}}\implies tan\left( (\beta)/(2)\right)=\pm \cfrac{1}{3}\\\\ -------------------------------\\\\


\bf cos\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1+cos(\alpha)}{2}}\implies cos\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1+(3)/(5)}{2}} \\\\\\ cos\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{(8)/(5)}{2}}\implies cos\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{4}{5}}\implies cos\left( (\alpha)/(2)\right)=\pm\cfrac{√(4)}{√(5)} \\\\\\ cos\left( (\alpha)/(2)\right)=\pm\cfrac{2}{√(5)}\implies cos\left( (\alpha)/(2)\right)=\pm\cfrac{2√(5)}{5}\\\\


\bf -------------------------------\\\\ sin\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1-cos(\alpha)}{2}}\implies sin\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1-(3)/(5)}{2}} \\\\\\ sin\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{(2)/(5)}{2}}\implies sin\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1}{5}}\implies sin\left( (\alpha)/(2)\right)=\pm\cfrac{√(1)}{√(5)}


\bf sin\left( (\alpha)/(2)\right)=\pm\cfrac{1}{√(5)}\implies sin\left( (\alpha)/(2)\right)=\pm\cfrac{√(5)}{5}\\\\ -------------------------------\\\\ tan\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1-cos(\alpha)}{1+cos(\alpha)}}\implies tan\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1-(3)/(5)}{1+(3)/(5)}} \\\\\\


\bf tan\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{(2)/(5)}{(8)/(5)}}\implies tan\left( (\alpha)/(2)\right)=\pm\sqrt{\cfrac{1}{4}}\implies tan\left( (\alpha)/(2)\right)=\pm \cfrac{1}{2}
Last question for today. I need answers for this, but I also need to know how to solve-example-1
User Zhongjiajie
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories