212k views
3 votes
Two pyramids are similar. The volume of the larger pyramid is 125 m³ and the volume of the smaller pyramid is 27 m³. The height of the smaller pyramid is 3 m.

What is the height of the larger pyramid?

2 Answers

4 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ \cfrac{small}{large}\qquad \qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\implies \cfrac{3}{h}=\cfrac{\sqrt[3]{27}}{\sqrt[3]{125}}\implies \cfrac{3}{h}=\cfrac{3}{5}\implies \cfrac{3\cdot 5}{3}=h
User Nipun Goel
by
8.0k points
4 votes

Answer: 5

Explanation:

I got it right on my test

User Aybars
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories