102,780 views
32 votes
32 votes
Hi, can you help me to solve this exercise, please!!

Hi, can you help me to solve this exercise, please!!-example-1
User John Bargman
by
2.2k points

1 Answer

16 votes
16 votes

Given that


\cot (\theta)=-\frac{\sqrt[]{35}}{7}

Note:


\cot (\theta)=(1)/(\tan (\theta))

Therefore,


(1)/(\tan (\theta))=-\frac{\sqrt[]{35}}{7}

Cross-multiply


\begin{gathered} 7*1=-\sqrt[]{35}*\tan (\theta) \\ 7=-\sqrt[]{35}\tan (\theta) \\ -\frac{7}{\sqrt[]{35}}=\tan (\theta) \\ \therefore\tan (\theta)=-\frac{7}{\sqrt[]{35}} \end{gathered}

Using trigonometry ratios,


\tan (\theta)=\frac{opposite}{\text{adjacent}}

Where,


\begin{gathered} \text{opposite}=-7 \\ \text{adjacent}=\sqrt[]{35} \end{gathered}

Let us now use Pythagoras theorem to obtain the hypotenuse

The formula for the Pythagoras theorem is,


\begin{gathered} \text{hypotenuse}^2=opposite^2+adjacent^2 \\ \\ \end{gathered}

Hence,


\begin{gathered} \text{hypotenuse}^2=(-7)^2+(\sqrt[]{35})^2 \\ \text{hypotenuse}^2=49+35=84 \\ \text{hypotenuse}=\sqrt[]{84}=\sqrt[]{4*21}=\sqrt[]{4}*\sqrt[]{21}=2*\sqrt[]{21}=2\sqrt[]{21} \\ \therefore\text{hypotenuse=}2\sqrt[]{21} \end{gathered}

We are to solve for csc(θ),


\csc (\theta)=(1)/(\sin (\theta))

Where,


\sin (\theta)=\frac{opposite}{\text{hypotenuse}}

Hence,


\sin (\theta)=-\frac{7}{2\sqrt[]{21}}

Therefore,


\begin{gathered} \csc (\theta)=\frac{1}{-\frac{7}{2\sqrt[]{21}}} \\ \csc (\theta)=1/-\frac{7}{2\sqrt[]{21}} \\ \csc (\theta)=1*-\frac{2\sqrt[]{21}}{7}=-\frac{2\sqrt[]{21}}{7} \\ \therefore\csc (\theta)=-\frac{2\sqrt[]{21}}{7} \end{gathered}

Hence, the answer is


\csc (\theta)=-\frac{2\sqrt[]{21}}{7}

User Steve Beer
by
2.8k points