118k views
0 votes
Please help! Select the graph for the solution of the open sentence. Click until the correct graph appears.

|x| > 1

(Possible answers attached)


Thanks in advance!

Please help! Select the graph for the solution of the open sentence. Click until the-example-1
Please help! Select the graph for the solution of the open sentence. Click until the-example-1
Please help! Select the graph for the solution of the open sentence. Click until the-example-2
Please help! Select the graph for the solution of the open sentence. Click until the-example-3
Please help! Select the graph for the solution of the open sentence. Click until the-example-4
User David Lam
by
8.4k points

2 Answers

4 votes
The answer would look like the first picture provided, except it wouldn't be a solid line, it would be dotted line (an > sign or < sign doesn't include the value it's pointing at or away from).
User Lvca
by
8.4k points
2 votes

Answer:

The correct option is 1.

Explanation:

If we have an inequity |x|>a, then the solution set for this inequity is


x<-a\text{ or }x>a


(-\infty,-a)\cup (a,\infty)

The given inequity is


|x|>1

Here a=1, therefore the solution set for this inequality is


x<-1\text{ or }x>1


(-\infty,-1)\cup (1,\infty)

-1 and 1 are not included in the solution set because the sign of inequity are < and >. It means there are open circle at -1 and 1.

Only graph 1 represents the solution set, therefore the correct option is 1.

User ChrisPatrick
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories