25.2k views
0 votes
The coordinates of the vertices of ∆PQR are P(-2,5), Q(-1,1), and R(7,3). Determine whether ∆PQR is a right triangle. Show your work and explain your answer!

The coordinates of the vertices of ∆PQR are P(-2,5), Q(-1,1), and R(7,3). Determine-example-1
User Tecla
by
8.1k points

2 Answers

2 votes
It is a right triangle. Here is a picture to show why. You can also use the pythagorean theorem. The formula is c= √a^2+b^2. This can also help, to prove that this is a right triangle.


The coordinates of the vertices of ∆PQR are P(-2,5), Q(-1,1), and R(7,3). Determine-example-1
User Drunken M
by
7.4k points
7 votes

Step 1

Plot the vertices of triangle PQR


P(-2,5)\ Q(-1,1)\ R(7,3)

using a graphing tool

see the attached figure

we know that the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

Step 2

Find the distance PR


P(-2,5)\ R(7,3)

substitute the values


d=\sqrt{(3-5)^(2)+(7+2)^(2)}


d=\sqrt{(-2)^(2)+(9)^(2)}


dPR=√(85)\ units

Step 3

Find the distance QP


Q(-1,1)\ P(-2,5)

substitute the values


d=\sqrt{(5-1)^(2)+(-2+1)^(2)}


d=\sqrt{(4)^(2)+(-1)^(2)}


dQP=√(17)\ units

Step 4

Find the distance QR


Q(-1,1)\ R(7,3)

substitute the values


d=\sqrt{(3-1)^(2)+(7+1)^(2)}


d=\sqrt{(2)^(2)+(8)^(2)}


dQR=√(68)\ units

Step 5

If triang;le PQR is a right triangle

then

Applying the Pythagorean Theorem


PR^(2) =QP^(2) +QR^(2)

substitute the values


√(85)^(2) =√(17)^(2) +√(68)^(2)


√(85)^(2) =√(17)^(2) +√(68)^(2)


85=17+68


85=85 ---------> is true

therefore

The answer is

The triangle PQR is a right triangle




The coordinates of the vertices of ∆PQR are P(-2,5), Q(-1,1), and R(7,3). Determine-example-1
User Max Koretskyi
by
8.4k points